

APAR 05-090 Raszyn, ul. Gałczyńskiego 6 tel. (22) 101 27 31, 853 48 56, 853 49 30 e-mail: automatyka@apar.pl www.apar.pl

INSTRUKCJA OBSŁUGI

AR570

PRZETWORNIK DO POMIARU PARAMETRÓW SIECI

Dziękujemy za wybór naszego produktu. Niniejsza instrukcja ułatwi Państwu prawidłową obsługę, bezpieczne użytkowanie i pełne wykorzystanie możliwości urządzenia. <u>Przed montażem i uruchomieniem prosimy o przeczytanie</u> <u>i zrozumienie niniejszej instrukcji</u>. W przypadku dodatkowych pytań prosimy o kontakt z doradcą technicznym.

SPIS TREŚCI

1. ZASADY BEZPIECZEŃSTWA	3
2. ZALECENIA MONTAŻOWE	3
3. OGÓLNA CHARAKTERYSTYKA PRZETWORNIKA. AKCESORIA I ZAWARTOŚĆ ZESTAWU	3
4. DANE TECHNICZNE	4
5. WYMIARY OBUDOWY I DANE MONTAŻOWE	5
5. OPIS LISTEW ZACISKOWYCH I POŁĄCZEŃ ELEKTRYCZNYCH	5
7. USTAWIANIE PARAMETRÓW KONFIGURACYJNYCH	7
8. KOMUNIKACJA SZEREGOWA. DOSTĘPNE OPROGRAMOWANIE I STEROWNIKI USB	9
8.1. PROTOKÓŁ MQTT	10
8.2. PROTOKÓŁ TRANSMISJI SZEREGOWEJ MODBUS-TCP	11
8.3. INTERFEJS KOMUNIKACYJNY RS485 (wg EIA RS-485)	11
8.4. PROTOKÓŁ TRANSMISJI SZEREGOWEJ MODBUS–RTU (SLAVE)	12
8.5. MAPA REJESTRÓW URZĄDZENIA DLA MODBUS-RTU/TCP	13
9. NOTATKI WŁASNE	15

 \triangle

Należy zwrócić szczególną uwagę na teksty oznaczone tym znakiem

Producent zastrzega sobie prawo do dokonywania zmian w konstrukcji i oprogramowaniu urządzenia bez pogorszenia parametrów technicznych.

1. ZASADY BEZPIECZEŃSTWA

Przed rozpoczęciem użytkowania urządzenia należy dokładnie przeczytać niniejszą instrukcję, ponadto:

- a) w celu uniknięcia porażenia prądem elektrycznym bądź uszkodzenia urządzenia montaż mechaniczny oraz elektryczny należy zlecić wykwalifikowanemu personelowi
- b) przed włączeniem zasilania należy upewnić się, że wszystkie przewody zostały podłączone prawidłowo
- c) przed dokonaniem modyfikacji przyłączeń przewodów należy wyłączyć napięcia podłączone do urządzenia
- d) zapewnić właściwe warunki pracy, zgodne z danymi technicznymi urządzenia (*rozdział 4*, napięcie zasilania, wilgotność, temperatura, itp.), nie narażać urządzenia na bezpośredni i silny wpływ promieniowania cieplnego

2. ZALECENIA MONTAŻOWE

Przyrząd został zaprojektowany tak, aby zapewnić odpowiedni - zgodny z normami poziom odporności na większość zaburzeń, które mogą wystąpić w środowiskach przemysłowych oraz domowych. W środowiskach o nieznanym lub wysokim poziomie zakłóceń zaleca się stosowanie następujących środków zapobiegających ewentualnemu zakłócaniu pracy przyrządu:

- a) nie zasilać urządzenia z tych samych linii co urządzenia wysokiej mocy bez odpowiednich filtrów sieciowych
- **b)** dla przewodów zasilających, pomiarowych i komunikacyjnych stosować ekranowanie oraz filtry ferrytowe, przy czym filtr i uziemienie ekranu (jednopunktowe) powinny znajdować się jak najbliżej przyrządu
- c) unikać prowadzenia przewodów w bezpośrednim sąsiedztwie i równolegle do przewodów energetycznych
- d) wskazane jest używanie bezpieczników przy pomiarze napięcia (szeregowo w torach pomiarowych napięcia)
- e) zaleca się uziemienie wtórnej strony przekładników prądowych (zaciski przetwornika do pomiaru prądu)
- f) unikać bliskości urządzeń zdalnie sterowanych, mierników elektromagnetycznych, obciążeń z fazową lub grupową regulacją mocy oraz innych urządzeń wytwarzających duże zakłócenia impulsowe
- g) uziemiać lub zerować metalowe szyny, na których montowane są przyrządy listwowe

3. OGÓLNA CHARAKTERYSTYKA PRZETWORNIKA. AKCESORIA I ZAWARTOŚĆ ZESTAWU

- pomiar wybranych parametrów sieci 3-fazowej w układzie 4-przewodowym lub w sieci 1-fazowej (3 kanały pomiarowe) o częstotliwości 50Hz, wartości true RMS
- pomiar napięcia fazowego, prądu w fazie, mocy czynnej, mocy biernej, mocy pozornej i współczynnika mocy
- zliczanie energii czynnej pobranej i oddanej oraz energii biernej pobranej i oddanej (czterokwadrantowo)
- wyliczanie kosztów energii czynnej pobranej i zysków z energii czynnej oddanej
- pomiar prądu bezpośredni (maks. 10A)
- pomiar prądu za pomocą przekładników prądowych (programowalna przekładnia prądowa)
- opcjonalny interfejs szeregowy RS485, protokół MODBUS-RTU do odczytu pomiarów i konfiguracji parametrów przetwornika
- opcjonalny interfejs ETHERNET, protokoły MODBUS-TCP oraz MQTT (dla internetu rzeczy IoT/M2M, aplikacji chmurowych i mobilnych), możliwość wymiany danych pomiarowych i konfiguracyjnych poprzez Internet
- interfejs USB (złącze mikro USB, wyposażenie standardowe, do programowania parametrów, podglądu pomiarów oraz do aktualizacji oprogramowania sprzętowego)
- sygnalizacja zasilania i komunikacji diodami LED
- bezpłatne oprogramowanie ARSOFT-CFG umożliwiające podgląd wartości mierzonych i szybką konfigurację pojedynczych lub gotowych zestawów parametrów zapisanych wcześniej w komputerze w celu ponownego wykorzystania, na przykład w innych przetwornikach tego samego typu (powielanie konfiguracji)
- konfiguracja poprzez port USB, RS485 lub Ethernet i program ARSOFT-CFG (dla Windows 7/10/11) lub aplikację użytkownika (z wykorzystaniem protokołów komunikacyjnych MODBUS-RTU i TCP)
- dostęp do parametrów konfiguracyjnych chroniony hasłem użytkownika lub bez ochrony
- szeroki zakres napięć zasilania (18÷265 Vac / 22÷350 Vdc)

- ełna separacja galwaniczna układu pomiarowego, interfejsów komunikacyjnych i zasilania
- obudowa do montażu na listwie TS35 (DIN EN 60715), stopień ochrony IP20
- nowoczesne rozwiązania techniczne, intuicyjna i prosta obsługa, wysoka dokładność i stabilność długoterminowa oraz odporność na zakłócenia
- opcjonalnie do wyboru (w sposobie zamawiania): interfejs RS485 i Ethernet (złącze RJ45)
- dostępne akcesoria (zakup możliwy również poprzez sklep internetowy apar.sklep.pl):
 kabel USB (A mikro B) do połączenia z komputerem, długość 1,5m
 - konwerter USB na RS485 (z separacją galwaniczną)

zawartość zestawu:

- przetwornik, instrukcja obsługi i karta gwarancyjna

- przed rozpoczęciem pracy z przetwornikiem <u>należy zapoznać się z niniejszą instrukcją obsługi i wykonać</u> poprawnie instalację mechaniczną, elektryczną oraz konfigurację parametrów
- domyślnie przetwornik jest skonfigurowany do bezpośredniego pomiaru prądu.

4. DANE TECHNICZNE

Zakres pomiarowy, wskazań (przetwarzanie A/C 24 bitowe)						
pomiar mocy czyn	nej, biernej i pozornej (sumarycznie)	-750 ÷ 750 [kW, kVar, kVA] (gdy CT1, CT2, CT3 = 100)				
pomiar prądu (dot	yczy pomiaru bezpośredniego)	0 ÷ 10 A				
pomiar napięcia		0,0 ÷ 250,0 V				
pomiar współczyn	nika mocy	0,000 ÷ 1,000				
energia czynna i b	ierna, pobrana i oddana (1), (2), (3)	0,0 ÷ 999999,9 [kWh, kVarh] (1), (2), (3)				
wyliczony koszt er	ergii czynnej	0,00 ÷ 19999998,00				
Dokładność, błąd (w temperaturze o	podstawowy toczenia 25°C , bez uwzględnienia błędów	v pomiarowych przekładnika prądowego)				
pomiar mocy czyn	nej, biernej i pozornej	1 % zakresu pomiarowego ±1 cyfra n. z. (4)				
pomiar prądu (dot	yczy pomiaru bezpośredniego)	1 % zakresu pomiarowego ±1 cyfra n. z. (4)				
pomiar napięcia		1 % zakresu pomiarowego ±1 cyfra n. z. (4)				
pomiar współczyn	nika mocy	1 % zakresu pomiarowego ±1 cyfra n. z.				
zliczanie energii cz	zynnej i biernej	1 % zakresu pomiarowego ±1 cyfra n. z. (4)				
Błąd dodatkowy	od zmian temperatury otoczenia	< 0,01 % zakresu wejścia /°C				
Czas odpowiedzi	dla pomiarów	1 s				
Rozdzielczość po (programowalna p mocy czynnej, bie	miarów ozycja kropki dziesiętnej dla pomiaru rnej, pozornej i pomiaru prądu)	0,1 (pomiar napięcia, energia) 0,01 (koszty energii) 0,001 (współczynnik mocy) 0,001 ÷ 1 (pomiar mocy, pomiar pradu)				
Zasilanie (Uzas, ur	niwersalne, zgodne ze standardami	18 ÷ 265 Vac, <3 VA (napięcie przemienne, 50 Hz)				
<u>24Vac/dc</u> , 48Vac/d	c, 110Vac, <u>230Vac</u> , itp.)	22 ÷ 350 Vdc, <3 W (napięcie stałe)				
Interfejsy komunikacyjne (niezależne, mogą być stosowane jednocześnie)	 - USB (złącze mikro typ B, komunikacja z komputerem), standard 	sterowniki dla Windows 7/10/11 (wirtualny port szeregowy COM, protokół MODBUS-RTU, Slave)				
	- RS485 separowany galwanicznie, (wyposażenie opcjonalne)	protokół MODBUS-RTU, Slave, szybkość 2,4÷115,2 kb/s, format znaku programowalny (<u>8N1</u> , 8E1, 8o1, 8N2)				
	- Ethernet separowany galwanicznie, (wyposażenie opcjonalne)	złącze RJ45, 10base-T, protokoły TCP/IP: MODBUS-TCP (Serwer), MQTT (klient, v.3.1.1), DHCP (klient), ICMP (ping)				

Sygnalizacja LED (dwie diody)				status zasilania/pracy oraz komunikacja przetwornika			
Znamionowe warunki użytkowania			0 ÷ 50°C, <90 %RH, bez kondensacji pary wodnej wewnątrz urządzenia, środowisko pracy: powietrze i gazy neutralne				
Stopień ochrony od fron			frontu IP40, od strony złącz IP20				
Masa			~220g				
Kompatybilność elektromagnetyczna (EMC) odporna			odporność: v	vg normy PN-EN 61000-6-2, emisyjność: PN-EN 61000-6-4			
Wymagania kategoria			instalacji: Il stopień zanieczyszczenia: 2				
bezpieczeństwa wg normy PN-EN 61010-1	napięcie względem ziemi: 3 interfejsów komunikacyjnyc			300 V dla obwodu zasilania i wejść pomiarowych, 50 V dla ch			
	rezystanc	ja izola	icji >20 MΩ	wysokość n.p.m. < 2000 m			

Uwagi: (1) – po przekroczeniu wartości 999999,9 licznik danej energii jest resetowany do wartości 0,0.

- (2) zliczona energia czynna i bierna, pobrana i oddana zapisywane są w nieulotnej pamięci co 5 min, należy odczekać 5 min przed wyłączeniem zasilania aby wyniki zostały poprawnie zapisane
 - (3) zliczona energia nie jest podstawą do rozliczeń, jest to wartość poglądowa do oceny zużycia energii
 - (4) możliwe przeprowadzenie kalibracji, lub okresowe przeprowadzanie kalibracji w celu poprawy dokładności (parametry 35: PQFA kalibracja mocy, 36: IFA kalibracja prądu, 37: uFA kalibracja napięcia, Tabela 7)

5. WYMIARY OBUDOWY I DANE MONTAŻOWE

Typ obudowy	szynowa
Materiał	PC/ABS samogasnący
Wymiary obudowy	45 x 107 x 79 mm (S x W x G)
Mocowanie	na listwie TS35 (DIN EN 60715)
Przekroje przewodów	maks. 2,5mm ² (zasilanie i pomiar
(dla złącz rozłącznych)	prądu), maks. 1,5mm ² (pozostałe)

6. OPIS LISTEW ZACISKOWYCH I POŁĄCZEŃ ELEKTRYCZNYCH

Tabela 6. Numeracja, opis listew zaciskowych i złącz

Zaciski / Złącza	Opis
1-3-5-7	wejścia pomiaru napięcia względem przewodu neutralnego
9-10 (opcja)	opcjonalny interfejs szeregowy RS485 (protokół MODBUS-RTU)
RJ45 (opcja)	opcjonalny interfejs Ethernet (protokoły MODBUS-TCP, MQTT, itp.), (rozdział 8.2)
12-13	wejście zasilające (uniwersalne)
14-15-16-17-18-19	wejścia pomiaru prądu, bezpośrednio lub z przekładnikiem prądowym
USB (mikro typ B)	interfejs USB do współpracy z komputerem, (rozdział 8)

Wszystkie kanały do pomiaru napięcia, należy podłączać do sieci energetycznej za pomocą bezpieczników, jak na rysunku b) w rozdziale 6 niniejszej instrukcji obsługi. Zalecane bezpieczniki to **F500mA** ÷ **F1A.**

a) Złącza AR570:

Wejścia pomiaru napięcia

9	10	1	2	3	4	5	6	7
+RS	- RS	L1	ı.	U2	т	U3	н	NN
RS	485				-			

Wejścia pomiaru prądu

Opcja

RJ45 10base-T

12 13	14	15	16	17	18	19
	S2	S1	S2	S1	S2	S1
Uzas	1	1	1	2	I.	3

b) Podłączenie wejść pomiarowych napięciowych:

Opcja

c) Podłączenie wejść pomiarowych prądowych:

d) Przykładowe podłączenie wejść pomiarowych kanału 1 w obwodzie 1-fazowym:

e) Przykładowe podłączenie wejść pomiarowych kanału 2 bez przekładnika prądowego:

f) Separacja galwaniczna obwodów:

7. USTAWIANIE PARAMETRÓW KONFIGURACYJNYCH

Wszystkie parametry konfiguracyjne przetwornika zawarte są w nieulotnej (trwałej) pamięci wewnętrznej. Przed rozpoczęciem użytkowania należy przypisać parametrom odpowiednie wartości. Dostępny sposób konfiguracji parametrów:

1. Przez port USB, lub zdalnie poprzez RS485 lub Ethernet i program komputerowy ARSOFT-CFG (rozdział 8):

- podłączyć przetwornik do portu komputera, uruchomić i skonfigurować aplikację ARSOFT-CFG,
- po nawiązaniu połączenia program wyświetla bieżące pomiary a dolna dioda sygnalizuje transmisję
- ustawianie i podgląd parametrów urządzenia dostępne są w oknie konfiguracji parametrów
- nowe wartości parametrów muszą być zatwierdzone przyciskiem Zatwierdź zmiany
 (w przypadku problemów z zapisem wielu parametrów jednocześnie, zaleca się je zatwierdzać pojedynczo)
- bieżącą konfigurację można zapisać do pliku lub ustawić wartościami odczytanymi z pliku

- przed odłączeniem urządzenia od komputera należy użyć przycisku **Odłącz urządzenie** (ARSOFT-CFG)
 - w przypadku braku odpowiedzi:

- sprawdzić ustawienia w Edycji konfiguracji (Rodzaj połączenia, Port COM, Adres MODBUS urządzenia, itp.)
- dla USB sprawdzić czy sterowniki portu szeregowego w komputerze zostały poprawnie zainstalowane (rozdz. 8)
- odłączyć na kilka sekund i ponownie podłączyć przetwornik lub konwerter RS485 do portu USB komputera
- wykonać restart ARSOFT-CFG i/lub komputera

<u>W celu przywrócenia ustawień firmowych</u> można użyć pliku z domyślną konfiguracją lub podczas edycji parametrów nacisnąć przycisk "Przywróć domyślne" w programie ARSOFT-CFG.

Tabela 7. Zbiorcza lista parametrów konfiguracyjnych

Parametr (indeks:nazwa)	Wartoś	Wartość i zakres zmienności parametru (wartość / wartość:nazwa) i opis						
I. KONFIGURACJA WEJŚĆ P	OMIARO	WYCH (podmenu ln)	,				
0: ctn1 przekładnia prądowa dla wejścia I1	1 ÷ 100		przekładnia prądowa przekładnika podłączonego do wejśc I1 (prąd pierwotny / prąd wtórny przekładnika)	cia	1			
1: ctn2 przekładnia prądowa dla wejścia I2	1 ÷ 100		przekładnia prądowa przekładnika podłączonego do wejśc 12 (prąd pierwotny / prąd wtórny przekładnika)	cia	1			
2: ctn3 przekładnia prądowa dla wejścia I3	1 ÷ 100		przekładnia prądowa przekładnika podłączonego do wejśc 13 (prąd pierwotny / prąd wtórny przekładnika)	cia	1			
3: dot pozycja kropki/rozdzielczość	0 ÷ 3		rozdzielczość dla pomiaru mocy i prądu (0 ÷ 0,000)		2			
4:truS	0,001 ÷	10,000	minimalna moc czynna wymagana do rozpoczęcia zliczani energii pobranych, biernej i czynnej	ia	0,001 [kW]			
5: trSE	-0,001 ÷	-10,000	minimalna moc czynna wymagana do rozpoczęcia zliczani energii oddanych, biernej i czynnej	ia	-0,001 [kW]			
II. USTAWIENIA CEN ENERG	ill, OPCJI	E DOSTĘ	PU (podmenu othE)					
6:AEuP	0 ÷ 20,0	00	cena energii czynnej pobranej za kWh		0,630			
7:AESP	0 ÷ 20,0	00	cena energii czynnej wysłanej za kWh		0,500			
8: PPro ochrona konfi- guracji hasłem dostępu	0:oFF = 1 1:on = k) D:FF = wejście do menu konfiguracji zdalnej <u>nie</u> jest chronione hasłem, 1:on = konfiguracja zdalna (tylko dla ARSOET-CFG) jest chroniona hasłem						
9: PASS hasło dostępu	0000 ÷ 9999 hasło wejścia do menu konfiguracji oraz dla MQTT (<i>rozdział</i> 8.1)				1111			
III. OPCJE KOMUNIKACJI D	LA RS48	5 I ETHE	RNET (podmenu trAn , opis w <i>rozdziałach</i> 8÷8.5)					
10: r4br prędkość dla RS485	szybkoś	ć transmi	sji kbit/s, 0: 2.4 , 1: 4.8 , 2: 9.6 , 3: 19.2 , 4: 38.4 , 5: 57.6 , 6: 115	5.2	19.2 kbit/s			
11: r4cF format znaku RS485	wybór b	itów parz	zystości i stopu, 0: 8n1 (none), 1: 8E1 (even), 2: 8o1 (odd), 3: 8n2	2	8n1			
12:Addr adres MODBUS-RTU	1÷247	adres u	rządzenia dla RS485 oraz sufiks (przyrostek) dla nazwy, (1)		1			
13: EtMo tryb pracy interfeisu	0:oFF	Etherne	et stale <u>wyłączony</u> (<u>zalecane gdy nie używany</u>)					
Ethernet (<u>adres</u> sprzętowy <u>MAC</u> dostępny z ARSOFT-	1:Auto	klient D adres IF	klient DHCP <u>włączony</u> , parametry sieci (od 78:EIP3 do 89:EGA0, tj. adres IP urządzenia, maska oraz brama) ustawiane są <u>automatycznie</u>					
CFG i MODBUS-RTU/TCP)	2: StAt	klient DHCP wyłączony, parametry sieci ustawiane są ręcznie						
14÷17: EIP3/2/1/0 adres IP	0÷255	adres If	Pv4 urządzenia w sieci lokalnej (Ethernet), 4 kolejne oktety	192	2.168.0.200			
18÷21: ESu3/2/1/0 maska IP	0÷255	maska	adresu IPv4 w sieci lokalnej (Ethernet), 4 kolejne oktety	255	5.255.255.0			
22÷25: EGA3/2/1/0 brama IP	0÷255	adres If	Pv4 routera w sieci lokalnej (Ethernet), 4 kolejne oktety	19	92.168.0.1			
26:EtcP port MODBUS-TCP	1÷9999	numer	portu TCP dla protokołu MODBUS-TCP (też dla ARSOFT-CFG)		502			
	0: oFF	protok	ół MQTT <u>wyłączony</u> (zalecane gdy nie używany)					
	1: AErE	protoko pobran	ół MQTT włączony, w treści publikacji zliczona energia czynna a, energia bierna pobrana, energia czynna i bierna oddana	3				
27:MaNo trub procy i	2: PSqS	MQTT \	włączony, w treści publikacji łączna moc czynna i bierna					
rodzaj publikowanych	3: PALL	publika	acja całkowitej mocy czynnej oraz osobno w każdym kanale	è				
wiado-mości MQTT	4: QALL	publika	acja całkowitej mocy biernej oraz osobno w każdym kanale					
(Ethernet)	5: SALL	publika	acja całkowitej mocy pozornej oraz osobno w każdym kanał	e	OFF			
(szczegółowy opis komuni-	6: UI	publika	acja prądów i napięć każdego kanału pomiarowego					
kacji MQTT rozdział 8.1)	7: Icos	w treśc	i publikacji prądy i współczynniki mocy każdego kanału					
	8: in1	moc cz	ynna, bierna, prąd, napięcie, współczynnik mocy dla kanału	1				
	9: in2	moc cz	ynna, bierna, prąd, napięcie, współczynnik mocy dla kanału	2				
	10: in3	moc cz	ynna, bierna, prąd, napięcie, współczynnik mocy dla kanału	3				

28÷31: Mqb3 ÷ 0 adres MQTT	0÷255	adr	es IPv4 bokera MQTT (Ethernet), 4 kolejne oktety	192.169.0.10			
32: MqtP port brokera MQTT	1÷9999	nur	ner portu TCP brokera MQTT	1883			
33: MqPE okres publikacji MQTT	1÷3600	interwał wysyłania wiadomości do brokera MQTT (Ethernet)		10 sek.			
34: MqtL poziom tematu MQTT	1÷9999	sufi	iks liczbowy dla nazwy tematu publikacji MQTT (APAR/MqtL)	APAR/1			
IV. KALIBRACJA POMIARÓW (podmenu uCAL)							
35: PQFA kalibracja mocy	-1000 ÷ 10	000	zwiększenie współczynnika powoduje zwiększenie wartości mierzonej, współczynnik jest wartością bez jednostki, uwzględniany przy zliczaniu energii	0			
36: IFA kalibracja prądu	-500 ÷ 500)	zwiększenie współczynnika powoduje zwiększenie wartości mierzonej, współczynnik jest wartością bez jednostki	0			
37: uFA kalibracja napięcia	-500 ÷ 500		zwiększenie współczynnika powoduje zwiększenie wartości mierzonej, współczynnik jest wartością bez jednostki	0			

Uwagi: (1) - nazwa urządzenia tworzona jest według szablonu: AR570_Addr (np. "AR570_1" dla 12: Addr = 1). Używana jest w treści publikowanej wiadomości MQTT (*rozdział 8.1*) oraz przez klienta DHCP (gdy 13: EtMo = Auto).

8. KOMUNIKACJA SZEREGOWA. DOSTĘPNE OPROGRAMOWANIE I STEROWNIKI USB

Komunikacja z urządzeniem możliwa jest poprzez każdy z dostępnych interfejsów szeregowych (<u>niezależnie</u>, tj. RS485, Ethernet oraz USB) i może być przydatna (lub konieczna) w następujących sytuacjach:

- zdalny monitoring i rejestracja aktualnych pomiarów oraz kontrola stanu pracy,

- konfiguracja parametrów, w tym również kopiowanie ustawień na inne urządzenia tego samego typu W celu nawiązania komunikacji na duże odległości należy zestawić połączenie w standardzie **RS485** (protokół MODBUS-RTU, *rozdziały 8.3 i 8.4*) lub **Ethernet** z wykorzystaniem protokołów MODBUS-TCP (*rozdział 8.2*) oraz MQTT (*rozdział 8.1*). Przy pierwszym podłączeniu urządzenia (lub konwertera RS485) do komputera poprzez port USB system uruchomi proces automatycznej instalacji sterownika portu szeregowego COM (z witryny *Windows Update*). Alternatywnie można wskazać ręcznie lokalizację sterownika na dysku komputera z poziomu *Menadżera urządzeń* postępując zgodnie ze wskazówkami kreatora instalacji (wybrać sterowniki "AR2xx/..." pobrane ze strony *www.apar.pl* lub z folderu instalacyjnego programu ARSOFT-CFG, standardowo "C:\Program Files (x86)\ARSOFT\Drivers\AR2xx..."). Dostępne są następujące aplikacje (dla systemów operacyjnych Windows 7/10/11, do pobrania ze strony *www.apar.pl/oprogramowanie.html* lub opcjonalnie z płyty CD lub e-mail z Działu Handlowego):

Nazwa	Opis programu
ARSOFT-CFG (bezpłatny)	 wyświetlanie aktualnych danych pomiarowych z podłączonego urządzenia produkcji Apar konfiguracja parametrów urządzenia tj. rodzaju wejścia pomiarowego, rozdzielczości wyświetlanych pomiarów, opcji komunikacji, dostępu, itp. (<i>rozdział 7</i>) tworzenie na dysku pliku z rozszerzeniem "cfg" zawierającego aktualną konfigurację parametrów w celu ponownego wykorzystania (powielanie konfiguracji)
APSystem-PC (płatny)	 - wyświetlanie i rejestracja aktualnych pomiarów z wielu urządzeń (poprzez MODBUS-RTU/TCP/ASCII) - alarmy wizualne, dźwiękowe, wiadomości e-mail, raportowanie zdarzeń, itp.

Szczegółowe opisy w/w aplikacji znajdują się w folderach instalacyjnych.

Przed nawiązaniem połączenia poprzez **RS485** należy upewnić się, że parametry urządzenia (10:**r4br**, 12:**Addr** oraz 11:**r4cF**) są zgodne z ustawieniami programu komputerowego. Ponadto ustawić w opcjach programu numer używanego portu szeregowego COM (dla konwertera RS485 nadany przez system w trakcie instalacji sterowników).

W zależności od używanego protokołu, połączenie poprzez **Internet** wymaga znanego adresu publicznego IP brokera dla protokołu MQTT oraz IP sieci w przypadku MODBUS-TCP (dla ułatwienia dostępu do sieci ze zmiennym publicznym adresem IP można uruchomić usługę DDNS, np. w routerze). **Dobór parametrów sieciowych w przetworniku oraz konfigurację routera** (w tym np. przekierowanie portu dla MODBUS-TCP, port forwarding) **należy zlecić osobie wykwalifikowanej (administratorowi sieci)**. Ponadto trzeba zwrócić uwagę aby firewall nie blokował używanych portów i aplikacji (np. ARSOFT-CFG). Unikatowy adres sprzętowy **MAC** (EUI-48) interfejsu Ethernet regulatora dostępny jest w ARSOFT-CFG (Parametry -> Opcje komunikacji...) oraz *mapie rejestrów* protokołów MODBUS-RTU/TCP.

Najprostszym sposobem przetestowania poprawności pracy regulatora w sieci LAN jest ustawienie interfejsu Ethernet w trybie automatycznym (parametr 13: **EtMo** = Auto), a następnie (z nadanym przez serwer DHCP adresem IP odczytanym z urządzenia) nawiązać połączenie z programem ARSOFT-CFG lub wykonać z wiersza poleceń komputera polecenie *ping* (oraz opcjonalnie *"arp -a"* dla Windows lub *"arp-scan"* dla Linux, gdzie otrzymamy również adres **MAC**).

8.1. PROTOKÓŁ MQTT

Popularny w aplikacjach IoT/M2M (internetu rzeczy) protokół MQTT jest lekkim protokołem transmisji danych, opartym o wzorzec publikacja/subskrypcja (do/z serwera). Korzystanie z protokołu wymaga poprawnie skonfigurowanego interfejsu sieciowego Ethernet oraz parametrów MQTT (*rozdział 7, Tabela 7, pkt III*), a także dostępu do brokera (serwera) ze <u>stałym adresem numerycznym IP</u> (przetwornik nie obsługuje protokołu

DNS - <u>tekstowych</u> nazw domenowych). Broker MQTT można uruchomić samodzielnie (np. Mosquitto) lub skorzystać z dostępnych w Internecie (płatnych lub darmowych jak np. EMQX). Znając nazwę strony brokera można sprawdzić jego adres IP, np. poleceniem *ping* (z wiersza poleceń komputera). Do odczytu (subskrypcji) z brokera wiadomości publikowanych przez regulator można użyć własnych rozwiązań lub jednej z wielu dostępnych w Internecie aplikacji (jak np. bezpłatny i prosty w obsłudze "*MQTT Dash"* dla Android, "MQTTool" dla iOS).

Nawiązanie połączenia z brokerem może trwać jakiś czas (zazwyczaj < 1,5 min, restart przetwornika po skonfigurowaniu parametrów MQTT może przyspieszyć ten proces).

Za wybór treści wiadomości wysyłanych cyklicznie do brokera MQTT odpowiada parametr 27: MqMo

(opis w *Tabeli 7*). Przykładowa treść (gdy 27:**MqMo** =in1, maksymalny rozmiar 99B):

"AR570_1;P1=0.000kW;Q1=0.000kVar;I1=0.000A;U1=233.5V;PF1=0.000" (AR570_Addr = nazwa urządzenia; P1= moc czynna i jednostka;Q1= moc bierna i jednostka;I1= prąd i jednostka;U1= napięcie i jednostka;PF1= współczynnik mocy).

Dodatkowo, w celu opcjonalnej autoryzacji połączenia, w pakiecie MQTT ustawiane są następujące pola: <u>ID klienta</u> (tworzone według szablonu "*apar***MAC**", gdzie **MAC** to adres sprzętowy EUI-48 regulatora, np. "*aparFCC23D21C54A*"), <u>nazwa użytkownika</u> (jako "*apar* PASS", <u>2 ostatnie cyfry parametru</u> 9: **PASS**, np. "*apar87*")

oraz <u>hasło</u> (parametr 9: **PASS**).

Parametry protokołu przydatne dla zaawansowanych potrzeb: wersja 3.1.1, QOS=0, retain=1, keep alive=0 (off).

<u>W przypadku częstego zrywania się połączenia z brokerem</u> należy sprawdzić niezawodność połączenia (przełącznika) sieciowego/internetowego, przetestować ewentualny wpływ okresu publikacji wiadomości (wydłużyć, zalecane > 10s, parametr 33: **MqPE** a także komunikacji MODBUS-TCP (chwilowo zatrzymać jeśli jest używana).

8.2. PROTOKÓŁ TRANSMISJI SZEREGOWEJ MODBUS-TCP

Protokół MODBUS-TCP dostępny jest dla interfejsu Ethernet (RJ45) i używa warstwy transportowej TCP/IP. Parametry wykorzystywane przez tą usługę jak np. numer portu TCP opisane są w *rozdziale 7, Tabela 7, pkt III.* Timeout dla transmisji MODBUS-TCP, po którym nastąpi zamknięcie otwartego, ale nieużywanego portu wynosi 60s. Dostępne funkcje : READ - 3 lub 4, WRITE - 6

Tabela 8.2.1. Format ramki żądania protokołu MODBUS-TCP dla funkcji READ oraz WRITE (długość ramki -12B)

Nagłówek protokołu MOE	BUS (7 bajtów)		Kod funkcji	adres rejestru	ilość rejestrów do odczytu
ldentyfikatory transakcji i protokołu	Pole długości (wartość = 6)	ldentyfikator jednostki	(READ lub WRITE)	z Tabeli 8.5 (rozdział 8.5)	(1 ÷ 13) lub wartość rejestru do zapisu
4 bajty	2 bajty	1 bajt	1 bajt	2 bajty (HB-LB)	2 bajty (HB-LB)

Przykład 8.2.1. Odczyt rejestru o adresie 0: 0x00 - 0x00 - 0x00 - 0x00 - 0x00 - 0x06 - 0xFF - 0x04 - 0x0000 - 0x0001

Tabela 8.2.2. Format ramki odpowiedzi dla funkcji READ (minimalna długość ramki - 11 Bajtów):

Nagłówek protokołu MOD	BUS (7 bajtów)	Kadfunkcii	iloáá boitá	nole danych - wartość		
ldentyfikatory transakcji i protokołu	Pole długości (maksymalnie 29)	ldentyfikator jednostki	(READ)	polu dane (2 ÷ 26)	rejestru (2B)	
4 bajty	2 bajty	1 bajt	1 bajt	1 bajt	2÷26 bajtów (HB-LB)	

Przykład 8.2.2. Ramka odpowiedzi dla wartość rejestru równej 0: 0x00 - 0x00 - 0x00 - 0x00 - 0x00 - 0x05 - 0xFF - 0x04 - 0x01 - 0x0000

Tabela 8.2.3. Format ramki odpowiedzi dla funkcji WRITE (długość ramki - 12 Bajtów)

kopia ramki żądania dla funkcji WRITE (Tabela 8.2.1)

Kody błędów są identyczne jak dla protokołu MODBUS-RTU (Tabela 8.4.5)

Przykład 8.2.3. Ramka błędu dla nieistniejącego adresu rejestru do odczytu: 0x00 - 0x00 - 0x00 - 0x00 - 0x00 - 0x00 - 0x05 - 0xFF - 0x84 - 0x02 - 0x0001

8.3. INTERFEJS KOMUNIKACYJNY RS485 (wg EIA RS-485)

Specyfikacja montażowa dla interfejsu RS485 jest następująca:

- maksymalna długość kabla 1 km (przestrzegać zaleceń montażowych, rozdział 2, podpunkty b, c, d
- maksymalna ilość urządzeń w linii RS485 = 30, dla powiększenia ilości należy stosować wzmacniacze RS485/RS485
- rezystory terminacyjne i polaryzujące gdy MASTER jest na początku linii (Rys. 8.):
 - na początku linii 2 x 820 Ω do masy i +5V MASTER-a oraz 150 Ω między liniami
 - na końcu linii 150Ω pomiędzy liniami

- rezystory terminacyjne i polaryzujące gdy MASTER jest w środku linii:

- przy konwerterze 2 x 820Ω, do masy i +5V konwertera
- na obu końcach linii po 150Ω między liniami

Urządzenia różnych producentów tworzące sieć RS485 (np. konwertery RS485/USB) mogą mieć wbudowane rezystory polaryzujące oraz terminujące i wtedy nie ma konieczności stosowania zewnętrznych elementów.

Rys. 8. Schemat poglądowy sieci RS485

8.4. PROTOKÓŁ TRANSMISJI SZEREGOWEJ MODBUS-RTU (SLAVE)

Prędkość transmisji oraz format znaku dla RS485 i adres MODBUS-RTU ustawiane parametrami 10:**r4br**, 11:**r4cF**, 12: **Addr** (*rozdział 7, Tabela 7, pkt III*). Dostępne funkcje: READ = 3 lub 4, WRITE = 6.

(alugose fairing objeow).					
adres urządzenia	funkcja 4 lub 3	adres rejestru do odczytu: z <i>Tabeli 8.5 (rozdz. 8.5)</i>	ilość rejestrów do odczytu: 1 ÷ 13	suma kontrolna CRC	
1 bajt	1 bajt	2 bajty (HB-LB)	2 bajty (HB-LB)	2 bajty (LB-HB)	

Tabela 8.4.1. Format ramki żądania dla funkcji READ (długość ramki - 8 Bajtów):

Przykład 8.4.1. Odczyt rejestru o adresie 0: 0x01 - 0x04 - 0x0000 - 0x0001 - 0x31CA

Tabela 8.4.2. Format ramki żądania dla funkcji WRITE (długość ramki - 8 Bajtów):

adres urządzenia	funkcja 6	adres rejestru do zapisu: z <i>Tabeli 8.5 (rozdz. 8.5)</i>	wartość rejestru do zapisu	suma kontrolna CRC
1 bajt	1 bajt	2 bajty (HB-LB)	2 bajty (HB-LB)	2 bajty (LB-HB)

Przykład 8.4.2. Zapis rejestru o adresie 10 (0xA) wartością 0: 0x01 - 0x06 - 0x000A - 0x0000 - 0xA9C8

Tabela 8.4.3. Format ramki odpowiedzi dla funkcji READ (minimalna długość ramki - 7 Bajtów):

adres urządzenia	funkcja 4 lub 3	ilość bajtów w polu dane, (maks. 13*2=26 bajtów)	pole danych - wartość rejestru	suma kontrolna CRC
1 bajt	1 bajt	1 bajt	2 ÷ 26 bajtów (HB-LB)	2 bajty (LB-HB)

Przykład 8.4.3. Ramka odpowiedzi dla wartość rejestru równej 0: 0x01 - 0x04 - 0x02 - 0x0000 - 0xB930

Tabela 8.4.4. Format ramki odpowiedzi dla funkcji WRITE (długość ramki - 8 Bajtów):

kopia ramki żądania dla funkcji WRITE (*Tabela 8.4.2*)

Tabela 8.4.5. Odpowiedź szczególna (błędy: pole funkcja = 0x84 lub 0x83 gdy była funkcja READ oraz 0x86 gdy była funkcja WRITE):

Kod błędu (HB-LB w polu danych)	Opis błędu
0x0001	nieistniejący adres rejestru
0x0002	błędna wartość rejestru do zapisu
0x0003	niewłaściwy numer funkcji

Przykład 8.4.5. Ramka błędu dla nieistniejącego adresu rejestru do odczytu:

0x01 - 0x84 - 0x02 - 0x0001 -0x5130

8.5. MAPA REJESTRÓW URZĄDZENIA DLA MODBUS-RTU/TCP

•	, ,		
Adres rejestru HEX (DEC)	Wartość (HEX lub DEC)	Opis rejestru oraz typ dostępu (R-rejestr tylko do odczytu, R/W-do odczytu i zapisu)	
0x00 (0)	-	nie używany lub zarezerwowany	-
0x01 (1)	5700 ÷ 5709	identyfikator typu urządzenia	R
0x02 (2)	100 ÷ 999	wersja oprogramowania (firmware) urządzenia	R
0x03 ÷ 0x0D	-	nie używany lub zarezerwowany	-
0x0E (14)	-750 000 000 ÷ 750 000 000	sumaryczna moc czynna [kW] w 3 kanałach pomiarowych, wartość w kodzie U2 (32-bit), rozdzielczość zależna od parametru 3: dot , przykładowo gdy 3: dot = 2 (rozdzielczość 0,01), wartość pomiaru 3,54 kW, wartość w rejestrze równa 354	R
0x10 (16)	-250 000 000 ÷ 250 000 000	moc czynna [kW], kanał 1, kod U2 jak w rej. 0x0E (14)	R
0x12 (18)	-250 000 000 ÷ 250 000 000	moc czynna [kW], kanał 2, kod U2 jak w rej. 0x0E (14)	R
0x14 (20)	-250 000 000 ÷ 250 000 000	moc czynna [kW], kanał 3, kod U2 jak w rej. 0x0E (14)	R
0x16 (22)	-750 000 000 ÷ 750 000 000	sumaryczna moc bierna [kVar] w 3 kanałach pomiarowych, kod U2 jak w rej. 0x0E (14)	R
0x18 (24)	-250 000 000 ÷ 250 000 000	moc bierna [kVar], kanał 1, kod U2 jak w rej. 0x0E (14)	R
0x1A (26)	-250 000 000 ÷ 250 000 000	moc bierna [kVar], kanał 2, kod U2 jak w rej. 0x0E (14)	R
0x1C (28)	-250 000 000 ÷ 250 000 000	moc bierna [kVar], kanał 3, kod U2 jak w rej. 0x0E (14)	R
0x1E (30)	-750 000 000 ÷ 750 000 000	Sumaryczna moc pozorna [kVA] w 3 kanałach pomiarowych, kod U2 jak w rej. 0x0E (14)	R
0x20 (32)	-250 000 000 ÷ 250 000 000	moc pozorna [kVA], kanał 1, kod U2 jak w rej. 0x0E (14)	R
0x22 (34)	-250 000 000 ÷ 250 000 000	moc pozorna [kVA], kanał 2, kod U2 jak w rej. 0x0E (14)	R
0x24 (36)	-250 000 000 ÷ 250 000 000	moc pozorna [kVA], kanał 3, kod U2 jak w rej. 0x0E (14)	R
0x26 (38)	-10000 ÷ 10000	pomiar prądu [A], kanał 1, kod U2 jak w rej. 0x0E (14)	R
0x28 (40)	-10000 ÷ 10000	pomiar prądu [A], kanał 2, kod U2 jak w rej. 0x0E (14)	R
0x2A (42)	-10000 ÷ 10000	pomiar prądu [A], kanał 3, kod U2 jak w rej. 0x0E (14)	R
0x2C (44)	0 ÷ 2500	pomiar napięcia [V], kanał 1, wartość w kodzie U2 (16-bit), rozdzielczość 0,1 (pozycja kropki 1)	R
0x2D (45)	0 ÷ 2500	pomiar napięcia [V], kanał 2, kod U2 jak w rej. 0x2C (44)	R
0x2E (46)	0 ÷ 2500	pomiar napięcia [V], kanał 3, kod U2 jak w rej. 0x2C (44)	R
0x2F (47)	0 ÷ 1000	pomiar współczynnika mocy, kanał 1, wartość w kodzie U2 (16-bit), rozdzielczość 0,001 (pozycja kropki 3)	R
0x30 (48)	0 ÷ 1000	pomiar współczynnika mocy, kanał 2, kod U2 jak w rej. 0x2F (47)	R
0x31 (49)	0 ÷ 1000	pomiar współczynnika mocy, kanał 3, kod U2 jak w rej. 0x2F (47)	R
0x32 (50)	0 ÷ 9999999	energia czynna pobrana [kWh], wartość w kodzie U2 (32-bit), rozdzielczość 0,1 (pozycja kropki 1)	R
0x34 (52)	0 ÷ 9999999	energia bierna pobrana [kVarh] ,	R

Tabela 8.5. Mapa rejestrów dla protokołu MODBUS-RTU i MODBUS-TCP (1 rejestr = 2 bajty lub 4 bajty)

		wartość w kodzie U2 (32-bit), rozdzielczość 0,1 (pozycja kropki 1)			
0x36 (54)	0 ÷ 9999999	energia czynna oddana [kWh], kod U2 jak w rej. 0x34 (52)	R		
0x38 (56)	0 ÷ 9999999	energia bierna oddana [kVarh], kod U2 jak w rej. 0x34 (52)	R		
0x3A (58)	0 ÷ 1999999800	koszt energii czynnej pobranej, wartość w kodzie U2 (32-bit), rozdzielczość 0,01 (pozycja kropki 2)	R		
0x3C (60)	0 ÷ 1999999800	zysk z energii czynnej oddanej, kod U2 jak w rej. 0x3A (58)	R		
0x3E ÷ 0x5F (62 ÷ 95)	-	nie używany lub zarezerwowany	-		
0x60 (96)	0 ÷ 65535	status połączenia interfejsu Ethernet oraz protokołów MODBUS-TCP i MQTT: - stan podłączenia do sieci LAN, link-up (<u>bit 0</u> , bit=1=podłączony), - stan połączenia z brokerem MQTT (<u>bity 1, 2</u> , bit1=bit2=1=połączony), - stan portu TCP dla MODBUS-TCP (<u>bity 6, 7, 8</u> , bit6=bit7=1=połączony),	R		
0x61 ÷ 0x63 (97 ÷ 99)	0 ÷ 65535	unikatowy adres sprzętowy MAC interfejsu Ethernet (EUI-48)			
Parametry konf	Parametry konfiguracyjne (zbiorcza lista parametrów znajduje się w <i>rozdziale 7, Tabela 7</i>)				
Adres rejestru (parametru) = 100 + indeks parametru z Tabeli 7 (np. adres=100 dla parametru 0: ctn1), Wartość rejestru (parametru) = wartość z Tabeli 7 (np. 2 w zakresie zmienności parametru 1÷100)					
np. 0x64 (100)	1 ÷ 100	przekładnia prądowa przekładnika podłączonego do wejścia l1 (prąd pierwotny / prąd wtórny przekładnika), <u>wartość w kodzie U2 (16-bit)</u>	R/W		
itd			R/W		

Niniejsze urządzenie podlega gwarancji zgodnie z ogólnymi zasadami gwarancji dostępnymi na stronie internetowej producenta **www.apar.pl**